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Abstract

Human preference alignment (HPA) aims to en-
sure Large Language Models (LLMs) responding
appropriately to meet human moral and ethical re-
quirements. Existing methods, such as RLHF and
DPO, rely heavily on high-quality human annota-
tion, which restrict the efficiency of iterative on-
line model refinement. To address the inefficien-
cies of human annotation acquisition, iterated on-
line strategy advocates the use of fine-tuned LLMs
to self-generate preference data. However, this ap-
proach is prone to distribution bias, because of dif-
ferences between human and model annotations,
as well as modeling errors between simulators and
real-world contexts. To mitigate the impact of dis-
tribution bias, we adopt the principles of adversar-
ial training, framing a zero-sum two-player game
with a protagonist agent and an adversarial agent.
With the adversarial agent challenging the align-
ment of protagonist agent, we continuously refine
the protagonist’s performance. By utilizing min-
max equilibrium and Nash equilibrium strategies,
we propose Indirect Online Preference Optimiza-
tion (IOPO) mechanism that enables the protago-
nist agent to converge without bias while maintain-
ing linear computational complexity. Extensive ex-
periments across three real-world datasets demon-
strate that IOPO outperforms state-of-the-art align-
ment methods in both offline and online scenar-
ios, evidenced by standard alignment metrics and
human evaluations. This innovation reduces the
time required for model iterations from months to
one week, alleviates distribution shifts, and signifi-
cantly cuts annotation costs.

1 Introduction

LLMs, such as GPT-4 [Achiam et al., 2023] and Baichuan-
2 [Yang et al., 2023], exhibit impressive reasoning capabil-
ities and advanced functionalities. However, a significant
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Figure 1: Fine-Tuning Pipeline (left) vs. I0PO Pipeline (right).
IOPO optimization without requiring continuous annotation.

challenge arises in how to ensure that LLMs respond ap-
propriately in special domains to meet human moral and
ethical requirements, particularly in politics and racial af-
fairs related to safety. Adjusting the bias of LLMs to align
with human preferences is referred to as Human preference
alignment[Ouyang et al., 2022].

To address the above challenges, researchers have explored
various algorithms to inject desired behaviors into LLMs. Re-
inforcement learning from human feedback (RLHF) [Bai er
al., 2022a] advocates for training multiple LLMs while us-
ing a reward model to score policy learning. Rafailov et al.
propose a Direct Preference Optimization (DPO) algorithm
reducing reliance on reward models[Rafailov et al., 2024].
However, all methods encounter a significant bottleneck: the
need for high-quality human preference comparisons, which
consists of paired model outputs with human annotations in-
dicating preference alignment.

For the challenge of this inefficient acquisition of high-
quality preference comparisons, iterated online strategy ad-
vocates the use of fine-tuned LLMs, to construct preference
data through self-questioning and self-answering periodically
[Ouyang et al., 2022; Bai et al., 2022b; Bai ef al., 2022a;
Rafailov et al., 2024; Xu et al., 2024]. However, this frame-
work suffers from distribution bias. On one hand, there are
differences between human annotation and model annotation.
Touvron et al.[Touvron et al., 2023] note that sampling distri-
bution shift in online procedure incurs these differences and
modeling errors: a distribution gap emerges between model-
generated preference data and human annotation preference
data after a few iterations. On the other hand, any established
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LLMs (simulator) may differ from the real environment. If
the learned policies are not robust enough to account for mod-
eling errors, transferring these policies from the simulator to
the real world often fails [Pinto et al., 2017]. Therefore, al-
though LLMs that have gone fine-tuned LLMs own extensive
vertical domain knowledge, high-quality preference data an-
notated by them often fail to generalize to real scenarios.

We propose Indirect Online Preference Optimization
(IOPO) to address distributional bias without additional an-
notations. Theoretical Foundations: Our dual-agent archi-
tecture employs inverse reward design within a rigorously
formalized two-player zero-sum game framework [Littman,
1994]. Through joint optimization of both agents’ reward
functions, the system guarantees convergence to Nash equi-
librium with provable stability. Symmetrically-Constrained
Bias Mitigation: The Nash equilibrium in our framework
naturally counteracts bias via adversarial dynamics. Build-
ing upon RARL [Pinto et al., 20171, our zero-sum constraints
effectively recast the agent’s bias as adversarial perturbations,
thereby achieving systematic bias reduction. The key in-
novation lies in our symmetric reward formulation, which
unlike conventional adversarial training, imposes balanced
constraints on both agents’ reward structures. This prevents
pathological collapse into biased strategies while maintain-
ing the adversarial agent’s role in continuously refining the
protagonist’s policy alignment. The resulting IOPO mecha-
nism ensures bias-free convergence while preserving compu-
tational efficiency with linear complexity.

Our framework necessitates careful consideration of two
key challenges: (1) dual-agent computational overhead and
(2) convergence instability in zero-sum games. We reformu-
late the Bradley-Terry model via importance sampling (IS)
[Tokdar and Kass, 2010] to quantify adversarial influence,
and propose a clipped IS scheme that ensures: (i) proximal
policy approximation, (ii) bounded policy trajectories, while
preserving IS benefits (efficiency, policy compatibility, unbi-
asedness). This achieves reliable adversarial optimization.

In summary, this paper makes the following contributions:

* We propose a novel indirect online preference optimiza-
tion (ORL) framework that simulates the real environ-
ment with no bias, without increasing annotation costs.

In light of excessive computational resource consump-
tion and slow-or-no convergence problem in ORL, we
impose a simple clipping on IS weight to perform prox-
imal approximation calculations.

Our approach outperforms the SOTA approach method
DPO in three real world datasets. Online evaluations
validate that the iterated online strategy with few human
annotations exhibits issues related to distribution shift
in online preference optimization, while our method re-
duces thousands of expenses and time in month in anno-
tation process.

2 Related Work

2.1 Reinforcement learning on Markov

The Markov process of standard reinforcement learning
(RL) is represented by a tuple (AGENT,ENV)
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(S, A, P,r,v). Here, AGENT is the entity making deci-
sions and learning, ENV is the external system. The actions
of AGENT influence the environment, thereby allowing the
AGENT to receive feedback. S is a set of states, A is a set
of actions, P : § x A x § — R is the transition probabil-
ity, 7 : S x A — R is the reward, ~ is the discount factor.
Main procedure of AGENT, such as Actor-Critic [Konda
and Tsitsiklis, 1999] and PPO [Schulman et al., 20171, is to
learn a stochastic policy mp : S x A — R that maximizes the

cumulative discounted reward Zz:ol vir(se, ar), where 0
denotes the parameters for the policy 7 at time-step t. Levine
et al. [Levine ef al., 2020] delineate key distinctions: online
RL involves ENV - AGENT iterations absent in offline RL,
while on-policy RL unifies behavior and learning in a single
policy versus off-policy’s separation.

Extending RARL [Christiano et al., 2017], we introduce a
clipped IS-weighted zero-sum game to reduce HPA bias.

2.2 Human Preference Fine-Tuning

Human preference alignment [Ouyang et al., 2022] seeks to
align LLMs with human expectations. Notably, Bai et al.
introduce Reinforcement Learning from Human Feedback
(RLHF) to develop a helpful and harmless assistant [Bai
et al., 2022a], utilizing self-questioning and self-answering
techniques [Bai er al., 2022b]. RLHF faces challenges, in-
cluding significant computational costs, complex comple-
mentary procedures, and instability due to reward hacking.
To enhance sampling efficiency and stability, Rafailov et al.
propose Direct Preference Optimization (DPO) as a means to
bridge the gap between reward functions and policy [Rafailov
et al., 2024]. RSO [Liu et al., 2023] improves the estima-
tion of the optimal policy by integrating SLiC with DPO.
Addressing overfitting and generalization issues, IPO [Azar
et al., 2024] mathematically critiques DPO’s limitations and
suggests a comprehensive objective for learning from human
preferences. KTO-PAIR [Ethayarajh et al., 2024] advances
this by directly optimizing human-aware losses (HALOs) in-
stead of merely maximizing the log-likelihood of preferences,
using a Kahneman-Tversky model of human utility. Nonethe-
less, most existing fine-tuning methods pose a need for high-
quality human preference comparisons, which restricts con-
tinuous model updates, underscoring the need for further re-
search in this domain.

Recently, iterated online strategy has emerged as a solu-
tion for continuous fine-tuning [Ouyang er al., 2022; Bai
et al., 2022b; Bai et al., 2022a; Rafailov et al., 2024;
Xu et al., 2024]. Self-Reward [Yuan et al., 2024] proposes
that LLMs utilize a Judge-Prompt mechanism to generate
their own rewards during training. Iter-FineTuning [Xiong et
al., 2024] introduces an iterative version of Direct Preference
Optimization for online settings and a multi-step rejection
sampling strategy for offline scenarios, effectively enhancing
policy learning. APO [Cheng et al., 2024] suggests an alter-
nating update approach for LLMs and reward models through
a min-max game using high-quality data. While existing on-
line methods have partially mitigated the limitations of offline
approaches, sampling distribution issues continue to impede
alignment efficiency [Touvron et al., 2023], necessitating ad-
ditional human annotations. For instance, DPO’s effective-
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Figure 2: The overall structure of IOPO. The model architecture
integrates human preference comparisons as inputs. During N, iter-
ations, adversarial LLMs generate a softmax output 7, (y* | z*),
which enables the protagonist LLMs to compute a binary cross-
entropy loss and a clipped importance sampling (IS) weight with
protagonist’s softmax output. The product of these two components
is expressed as an objective function Eq.(14). In the following N,
iterations, the adversarial LLMs analogously compute a correspond-
ing quantity derived from the protagonist LLMs’ softmax output.

ness is contingent upon high-quality data, and RLH(A)F re-
ward models require real-time updates.

Our dual-agent architecture implements inverse reward de-
sign within a formal two-player zero-sum game framework
[Littman, 1994], guaranteeing Nash equilibrium convergence
with provable stability. Extending with [Pinto et al., 2017],
we develop a bias-reducing zero-sum two-player game.

3 System Model and Problem Formulation

The fine-tuning pipeline consists of three stages: 1) unsuper-
vised pretraining of LLMs, 2) LLMs aligned through super-
vised fine-tuning (SFT), and 3) LLMs optimized with RL
algorithms, commonly REINFORCE [Zoph, 2016], proxi-
mal policy optimization (PPO) [Schulman et al., 2017], DPO
[Rafailov et al., 2024], or their variants.

For DPO, given a tuple (z, ¥, y,,) sampled from dataset

D= {20,340 49

yi | x, where y,, and y;represent the preferred and less pre-
ferred completions, respectively.

exp (7 (£, Yw))
exp (rg (2, yw)) +exp (rg (z,11)) (1)
=logo(re (e, y1) — r4(x, yuw)).

where Q (yw >y | ) or P (y, = yi | ) calculated based
on the Bradley-Terry mathematical model[Bradley and Terry,
1952]. The optimization of the reward model 74(x, y) can be
formulated as maximizing the negative log-likelihood loss:

['R(Tdh D) = 7E($,yw,yl)~’D [loga(m,(x, yl) - 7’¢(:E, yw)] . (2)
Following policy optimization problem as formulating:

} , the preference is denoted as ¥, >
i=1

Q(yw =Y | ‘T) =

max By yomy y1a) [76(7,9)] = BDxw[mo(y | 2) [| meer(y | 2)], (3)

where [ is a hyper parameter, controlling the deviation from
model policy 7y to reference policy ¢, With 7y is also ini-
tialized to 75F T
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To simplify the pipeline, motivated by [Rafailov et al.,
2024], we deduce the policy 7y from the objective function:

7| 2) = sy | ) (;r@c,y)) ,
4)
Z(.’IJ) - Zﬂ—ref(mx) exp (;T(.’I}, y)) 3

where we rename the derivation outcome as m,.(y | ). Sub-
sequently, the reward model r(z, y) is presented as follows:

T (y | )
r(z,y) = Blog ——= + Blog Z(x). 5)
(z,y) S (z)
Substituting Eq.(5) into Eq.(1), here is reward function:
QWuw =y |x)= (v l2) (6)

1
1+exp(5 log ﬂ’r(yl‘z) —Blog -

ref (Y1)

Therefore, policy objective and the gradient of the loss func-
tion are shown below:

ref (YwlT)

Lppo (75 Tret) = —E(z,y0 y)~D
7
[loga <Blog 7o (Yuw | ) ~ Blog mo(yu | ) )] ’ 7
7T-ref(yu) ‘ .’L’) ﬂ—ref(yl ‘ .’L’)
VoLopro(mo; Tret) = —BE(z 0 yi)~D

8
[o(Fo(, 41) — 7o (2, yw)) [Volog m(yw | 2) = Vologm(y: | 2)]], ®
mo (y|z)

71'ref(ylx) ’

defined by 7y (y|z) and myet (y| ).

where 7y (z,y) = Slog

denoting reward implicitly

4 Methodology

The original fine-tuning as Fig.1 (left) poses additional anno-
tation cost caused by sampling distribution shifts: LLMs, via
DPO (RLHF), will infer new Preference Comparison Com-
pletions to continuously update their models or reward mod-
els. In contrast, we employ a two-players zero-sum game to
calculate distribution shift ratio as Fig.1 (right).

4.1 Formulations of Indirect Online Preference
Optimization

Both players observe the state s; and take actions a}’ ~ p(s;)

or ay ~ p(st), where p and v represent the strategies of pro-

tagonist and adversary, respectively. We note that a}’ ~ p(s;)

and af ~ p(s:) denote preferences as y,, = y; | « and

Y1 = Yw | ®. The state transitions s;11 = P(s¢,a},a?)
are given by 7(u,v), and a reward r; = r(sy,al’, a¥) is de-
fined as ri’ = r; while the adversary gets a reward 7y = —7y.

Reward function optimization is evaluated as follows:

maXer, By, (410) 1o (@ ¥)] = BDxL[mu(y | 2) [ mu(y [ 2)]. (9)

As for computation costs, r¢(f) quantifies the distribution
shift caused by protagonist 7, and adversary m,. RARL
[Pinto et al., 2017] demonstrated that the notions of min-
max equilibrium and Nash equilibrium are equivalent for this
game, with an optimal equilibrium reward denoted as Q**.

Q" = minmax Q" (u, v) = maxmin Q“(u,v).  (10)
v “w “w v
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Similarly, the adversary aims to maximize its own reward
through Q" Q" (u,v) = —Q*(u,v). And we observe
that 7, (y; | 2*) = Wy(yw | z%):

£(0) ! ,if r},(8) = 0 or oo, an
Tul0) = 4 mulvila’) _ molla)
8 7r,,(y;t|xt) AT other case ,

We should emphasize that TZ(G) = 0 represents overfitting in

pipeline, while rft — oo situations where learning the data
features is difficult.

Due to the slow-or-no convergence problem, we employ a
simple clip proximal calculation on T‘Z (0) to penalize signifi-

cant deviations staying away from the ratio of norm.
n(0) = ,(0), clip(r,(0),1 — —r,(0). (12)

-
Given the constraint > 7 (y|z) 1, we perform La-

" 6l+e€)=
grange differentiation on Eq.(9) to derive the policy 7,:

min (7},

Q, (yw =y | 2) = =Q) (yuw = u1 | ¥)

_ 1 (13)
73(0) = (1 +exp (Blog THUES — Blog T2 ).

Therefore, using Eq.(13), we can transform Eq.(7) into
Eq.(14) and Eq.(8) into Eq.(15), respectively.
_Ef

Liopo(mu;my) = Yoo y1)~D

* O] Tl 09
|: (9) 10g0’(610 (yw‘ ) ﬁlOg Wf,(yw|$) )
V.Liopo(mu;my) = —5E (#,Yw,y1)~D
7, (Yuw2) T (yilz)
t A AT
g (s e - tos e )] 09

[VﬂM log m (Y ‘ r) — Vm log W;L(yl | .r)],
which consist of the objective function and its backward
derivative formula for the protagonist.

4.2 Indirect Online Preference Optimization
Outline

The model structure is illustrated in Fig.2, where human pref-
erence comparisons inform our models. Over N, iterations,
adversarial LLMs supply the protagonist LLMs with a soft-
max output 7, (y* | z'). This output is used by the protago-
nist LLMs to compute a binary cross-entropy loss and an IS
weight with clipping. The product of the cross-entropy loss
and the clipped IS weight forms the foundation of the reverse
iteration process, as detailed in Eq.(15). During N, itera-
tions, the adversarial LLMs derive the cross-product of the
binary cross-entropy loss and the clipped IS weight from the
softmax output of the protagonist LLMs.

Pipeline is as Algorithm.1: 1) initialize policy models u
and v via SFT; 2) In practice, we carry out an iterative two-
step optimization procedure. First, for N, iterations, the pa-
rameters of the adversary 6! are held constant and serve
as the ENV, while the parameters Ht of the protagonist
AGENT are optimized to maximize the reward function
Eq.(14). For the next step of N, iterations, the parameters
of the protagonist are held constant, and the parameters of
the adversary 6!, are optimized via Eq.(15).

541

Algorithm 1 Indirect Online Preference Optimization

Input: Datasets D = {x( ), yg), yzm}
i=1

Parameter: 0, for 1 and 69 for v
Output: Hflv“e"
: for i < 1to Ny, do
0, < 0!
for j <— 1to IV, do
0/, and 0" serve as AGENT and ENV

0’ < Optimization with (15)
End For

1
2
3:
4:
5

0 « 61!
for j < 1to NV, do
0 and 01 serve as AGENT and ENV

0t Optlmlzatlon with (15)
End For
11:

End For

12: return GIJ)’“”

RN

10:

5 Theoretical Analysis

Theorem 1. When t — oo, our Q(u,v) that is a zero-sum
two-player game, is monotonic and converge.

Proof. When t — oo, Q(u, v) is a zero-sum game as follow:
(@~ Q) +(Q, Q) =0,
t t—1 t—1 t—1\ __
(QuiQu )+(Qu 7Q,u. )703
where QZ denotes mean-value of protagonist at ¢ iteration.
Therefore, we deduce from Eq.(16) to Eq.(17):

(16)

(@ -Q ) =(Q. - amn
Similarly, there is (Qf, — Q.™') = (Q4F' — Q!). By this
equation and Eq.17, we have :

(Qt Qt 1) (Qt+1 t) (18)

Eq.(18) indicates that the reward function () forms an arith-
metic progression. Given that Q € range(Q?, = (1/r%(9))),
where Q;, € [0, 1] and 7*(6) is constant, we conclude that our
algorithm converges based on Theorem (1). O
Theorem 2. With rt(0) is constant, our Q,, converge faster.

Proof. We note that for IV, iteration:

QL Q" = @ty - | )
t Rle) )
0y« (pr TS - s TS ) 09

o (1/7,,(0)) * (my, (yool) /77, (] 2)),

where 7! (6) is constant in N, iteration.
Transforming Eq.(18) with Eq.(19) into Eq.(20):

(Qt _ Qt—l)/(Qt+1 _ QL)
= (" (ywlo) /7 (i) / (), (ywl) /77, (| 2))
(), (yol) /77, (| 2)) /(7 (g l2) /0, ().

(20)
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Datasets Baselines Win rate (IOPO vs.) by Ziya | Win rate 1OPO vs.) by ERNIE-3.5
SFT - 44.8% vs. 21.6% vs. 33.6%
DPO 50.4% vs. 21.2% vs. 28.4%
safe world view HING 49.2% vs. 20% vs. 30.8%
IPO 44.8% vs. 22% vs. 33.2%
KTO-PAIR - 48% vs. 21.6% vs. 30.4%
SFT 13%vs. 75%vs.12% 65% vs. 3% vs. 32%
DPO 12%vs. 78% vs. 10% 50% vs. 8% vs. 42%
distilabel-capybara-dpo | RSO or HINGE 10% vs. 78% vs. 12% 53%vs. 18% vs. 39%

IPO 12%vs. 76% vs. 12%

51% vs. 7% vs. 42%

KTO-PAIR 12% vs. 78% vs. 10% 48% vs. 7% vs. 46%

SEFT 65%vs.0%vs.35% 48% vs. 42% vs. 10%

DPO 53% vs. 0% vs. 47% 50% vs. 34% vs. 16%

orpo-dpo-mix-4ok HING 48% vs. 0% vs. 52% 48% vs. 36% vs. 16%

KTO-PAIR

IPO 54% vs. 0% vs. 46%
65% vs. 0% vs. 35%

46% vs. 32% vs. 22%
45% vs. 35% vs. 20%

Table 1: Our method outperforms the baselines with Baichuan2-7B-chat in offline scenarios. The win rate is calculated by comparing
IOPO against the baselines (by Ziya and ERNIE-3.5) using the metrics (Rwin VS Rrie VS Riose ). All evaluations are performed on out-of-

distribution completions at a sampling temperature of 0.8.

First, the ratio (7!, (ywl|2)/7},(y1|x)) resembles a func-
tion f(k) = k/(1 — k), where 7}, (yu|z) or k € [0,1].
The series Newton-Leibniz formula [Bos, 1980] expansion
of f(k) is k + k*2 + k*3 + ... and the derivation of
f(k), fork € [0,1] is positive. Our evaluations show that
1/2 < ! (ywlr) <= 75 (yy|2) is generally true, implying
that (7}, (yw|2) /7], (y1]x)) increases as m},(y.|x) increases.
w;(yw|m)7rﬁ+1(yl\z) 1
(o) (ywle) =
o (ywl2) /my (y2)

LAV EACTIED)

Additionally, WZ:: Ezwlgﬂét;l(ﬂf)lm) < 1, similar to the afore-

mentioned inequality, but with the opposite inequality sign
when 7, (| ) > 7 (y,|2).

In conclusion, (Qf, — Q1,1)/(QL — Q},) <=1 denotes
that Q,, converge faster with (). O

we conclude that:

Second, the ratio remains constant.

Theorem 3. As for sampling errors{ Touvron et al., 2023],
with high probability > 1 — 6, in each iteration of Ner, for
all (x,yw,y1) € D, our reward function Q have a bound

Qw =y | ©) < Qyw = wi | @) + (1/r(0))
% (Cr,delta1 CT,deltag R ’

VD vp 1=a)

where C. geitq, s a constant dependent on the concentra-

tion properties (variance) of 7(x, Yuw, Y1), CT deltas IS a con-

stant dependent on the concentration properties (variance)
N

of T(z"a', yiy,yp), a = [[,2,(1/r(0)) and |Q(yw >

yl|x)| S R(V(m7 Yw, yl))

)+

Proof. We know that |r(s,a)] < R(V(s,a)) and then

Q(s,a) < % with Bellman Iteration[Kakade and Lang-
ford, 2002] . We deduce that Q,, (v, = y1 | ) < £, where

1—a’

1Q(yw > wi|z)| < ROV(, Y, y1)) and o = [[1, (1/4(0)).

542

For i iteration, r(6)) < 1, we have T[], (1/r1(0)) <=

N
[L=i(1/r(0)). ) )

Same as SAC [Haarnoja et al., 2018] or Conservative Q-
Learning for Offline Reinforcement Learning[Kumar er al.,
20201, for all (x, Y, y1) € D, with high probability> 1— 41,

[Fo (@, yw) — To (@, y1)| = |Fo (2, yuw) — ro(@, yu)| + [Fo(z, y1) — ro (2, 31)]
Cr‘deltm (21)
VI
where C, geitq, iS a constant dependent on the concentra-
tion properties of r(x, ¥y, ;) and &1 € (0,1), Fo(x,y) =
Blog :im , o(,y) and ¢ (x, y) denote empirical distribu-
tion function and iterative stable empirical distribution func-
tion. Motivated by Eq.(21), we have

Q4w = vt | 7 — Q' (yw = | 2)] < (1/74(9)) % o(“teleeny, (22)
where o is sigmoid function. Similarly as Eq.(21):

Dot gl pf) = Tt at g, )| < “htdeez, (23)
where Crs, is a constant related to the concentra-
tion properties of T'(x'™t|zf v yf) with 62 € (0,1).
T(xt 2ty yf) and T(zt1 |2t ol yf) represent the em-
pirical and iterative stable empirical distribution function of
the next action under policy 7(u, ) at state (x, Y, Y1 )-

Here are deductions with high probability > 1 — §:

|Qt+1(yw /] ‘ T — Qt+1(yw /] ‘ x)l
= ‘Qt(yw =Y | € — Qt(yw /] | .IJ)
+ Z(T - T)Emf‘*'lNTr[QtJrl(yw = U ‘ x)l
Tt4+1
< ‘Qt(yw =Y |$_Qt(yw /) |£L’)| (24)
. R
+ | Z(T - T>Ewt+1~ﬂ’[7]|

l—«

< 2xmax(|fo(z, yw) — To(: Yu)l, [Fo(z, i) —ro(z,y0)|) <

Tt41

< (1/Tt(9)) * g(crj%% ) + C‘T\,}i%ta2 . (

R

1l—«

).
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Baselines "l_"est set of safe Yvor.ld view _ 250 pieces real-life online data
Margin reward | Pairwise accuracy | Win rate by ERNIE-3.5 | Mean value scored by human

SFT - - 13:204:10: 23 2.156

DPO 23.75 0.9286 13:203:11:23 2.164

Iter-DPO 7.6875 0.961 13:204:11:22 2.152

10PO 11.875 0.9659 - 2.176

Table 2: Our method outperforms Iter-DPO in online scenarios. Based on human evaluation, the win rate is calculated by comparing
IOPO against the baselines categorized as (Rwin VS Rric VS Riose VS bad case). Here, a bad case is defined as a scenario where both answers
evaluated by humans receive a score of 0. All evaluations are conducted on out-of-distribution data at a sampling temperature of 0.

6 Experiments

Our evaluations indicate that it performs well in assessing
response quality for single-turn dialogues in single settings,
multi-turn dialogues across multiple domains, and for both
single-turn and multi-turn dialogues in multiple domains.

6.1 Datasets & Setting
There are three real-world data sets for the evaluation:

* safe world view contains 44k single-turn comparisons
about world view demands, which is a real-world dataset
sourced from Baidu.

distilabel-capybara-dpo contains 7.56Kk multi-turn com-
parison data spanning math, medicine, computer sci-
ence, history, and literature, among others. '.

The orpo-dpo-mix-40k dataset contains 44.2k single and
multi-turn comparisons across math, medicine, CS, his-
tory, and literature. It includes froxic-dpo-v0.2 to train
models to reject illegal queries. Created via rule-based
filtering (removing 2,206 GPTisms from argilla, un-
alignment, M4-ai, and jondurbin), it’s suitable for high-
quality ORPO/DPO training.>

We use Baichuan2-7B (base/chat) with standard SFT param-
eters. Training: learning rate [r = 2 xexp~ ", batchsize = 32,
B = 0.1. IOPO matches DPO’s sensitivity to hyperparame-
ters except clipping, and is robust to e(set to 0.3).

6.2 Comparison Algorithms & Metrics

To provide a comprehensive evaluation of our proposed
method, we have designed a series of experiments involving
several methods, as outlined below 3:

e DPO [Rafailov et al., 2024]: Given preference data,
DPO fits a binary classifier based on the Bradley-Terry
model. DPO propose a sigmoid loss on the normalized
likelihood by fitting a logistic log-sigmoid function.

* RSO or HINGE [Liu et al., 2023]: RSO proposes using
a hinge loss on the normalized likelihood derived from
the methodologies of SLiC and DPO.

!"This dataset can be found on HuggingFace at https:/hf-mirror.
com/datasets/argilla/distilabel-capybara-dpo- 7k-binarized

>https://hf-mirror.com/datasets/mlabonne/orpo-dpo-mix-40k

3DPO, RSO, IPO, and KTO-PAIR code is detailed on Hugging-
Face at https://hf-mirror.com/docs/trl/dpo_trainer.
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IPO [Azar er al., 2024]: TPO is also based on the recip-
rocal of the gap between the log-likelihood ratios of the
chosen versus rejected completion pairs.

KTO-PAIR [Ethayarajh et al, 2024]: Using a
Kahneman-Tversky model of human utility, KTO-PAIR
directly optimizes with human-aware losses (HALOs).
SFT: The SFT model is optimized by training on

LYN
datasets D = {(x(i),yg))}_ K
Iter-DPO: Building on prior works [Ouyang er al., 2022;
Yuan et al., 2024; Xiong et al., 2024; Cheng et al.,
2024], we employ LLMs (via DPO tuning) to gener-
ate preference comparison completions, annotated by
ERNIE4.0 for iterative DPO learning: (i) Generate
40K-80K weekly samples using baidu’s internal data;
(ii) Annotate 250K completions ($0.0174/K tokens);
(iii) Train on 50K samples (1:5 quality ratio, $1K); (iiii)
Complete in 1-2 months.

We evaluate algorithms by measuring their Win rate (Rwin
vs Rrie Vs Rpose) against a baseline policy, using sampling
temperature 0.8 for generation and O for human-annotated
ranking (scores 0-3). Proxies like ERNIE-3.5 and Ziya-
LLaMA-7B-Reward assess dialogue quality. A ‘bad case’
is defined as human-rated 0 for both answers. Win rates
are computed from toxic comparison datasets with out-of-
distribution model responses.

For better online performance evaluation, we split the safe
world view dataset into two parts: 40k and 4k, using the 4k set
for testing margin reward and pairwise accuracy. The mar-
gin reward is defined as the difference 7(x,y") — r(x,y')
for preference triplets, while pairwise accuracy is defined as

r(z,y") > r(z,y').

6.3 Main Analysis

Shown as Table 1, our IOPO achieves the best performance
(measured by win rate (Rwin VS Rrie VS Rpose) among all
methods, particularly with ERNIE-3.5. A more comparison
details analysis via ERNIE-3.5 shown in appendix .

While RSO/HING outperform IOPO on Ziya-7B in
distilabel-capybara-dpo and orpo-dpo-mix-40k, 10PO per-
forms better on ERNIE-3.5 due to: (1) Ziya’s limited domain
coverage (only 8.2% of its 40K training data comes from ex-
ternal sources), and (2) its smaller model size. Rationale for

*https://arxiv.org/submit/6429160/view


https://hf-mirror.com/datasets/argilla/distilabel-capybara-dpo-7k-binarized
https://hf-mirror.com/datasets/argilla/distilabel-capybara-dpo-7k-binarized
https://hf-mirror.com/datasets/mlabonne/orpo-dpo-mix-40k
https://hf-mirror.com/docs/trl/dpo_trainer
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Figure 3: Offline scenarios: margin reward distributions under a nor-
mal distribution (left) and count-based distribution (right).

Baseline Retention show as: Despite these limitations, we
continue to use it as the baseline evaluator due to its excep-
tional ability to recognize toxic data and its official acknowl-
edgment in GPT-4’s benchmark.

A more detailed analysis is presented in Fig.3, distribu-
tion shift is reflected in normal distribution and distribu-
tion of margin reward, where it shows that the margin re-
ward of training procedure for three datasets. For distilabel-
capybara-dpo, depicted in Fig.3(b), the small scale of the
dataset and the multi-domain (especially math) hinder the
margin reward from increasing and stabilizing. For orpo-
dpo-mix-40k, depicted in Fig.3(c) the margin reward in-
creases compared to other methods but exhibits scatter. All in
all, distribution in Table.3 with win rate of IOPO vs. baseline
in Table.1, highlights the superiority of our IOPO method.

6.4 Ablation Analysis

We conduct an ablation evaluation with IOPO and Iter-DPO
starting from the LLMs after DPO to isolate external factors.
The SFT model is trained on Baichuan2-7B-base, and the
DPO model builds on this SFT model. Human evaluations
of 250 data pieces yield mean scores: SFT via Baichuan2-
7B-base scores 2.156, DPO via Baichuan2-7B-base scores
2.164, SFT via Baichuan2-7B-chat scores 2.148, and DPO
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Figure 4: Online scenarios: margin reward distributions under nor-
mal distribution (left) and count-based distribution (right).
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Figure 5: Online evaluation scenarios: margin reward (left) and pair-
wise accuracy (right) on the test set of safe world view. Our method
demonstrates more stable performance and superior results.

via Baichuan2-7B-chat also scores 2.148. To effectively im-
plement the Iter-DPO algorithm and manage the high ranking
costs of ERNIE-4.0 (approximately 50k high-quality infer-
ence data), we select Baichuan2-7B-base as the base model,
filtering 50k inference data points at a 1:5 ratio of high-
quality to low-quality.

As shown in Table.2, our method outperforms all other
methods. While the DPO model excels in margin reward,
it lags behind Iter-DPO and IOPO in pairwise accuracy dur-
ing testing due to its poor generalization performance. Addi-
tionally, human evaluations highlight that Ifer-DPO encoun-
ters differences and modeling errors, resulting in lower mean
value scored by human than the DPO model but higher pair-
wise accuracy than DPO. In factual and safety evaluations,
our IOPO achieves a better win rate based on human anno-
tations and scored the highest mean value scored by human
at a temperature of 0. The training procedure as depicted in
Fig.4, DPO and Iter-DPO scatter more divergently in margin
reward on safe world view than IOPO. As depicted in Fig.5,
our method’s performances on margin reward and pairwise
accuracy on test set of safe world view much more better than
others. All in all, our method perform the best among all the
methods in online evaluations.

7 Conclusions

In conclusion, we propose the Indirect Online Preference
Optimization (IOPO) algorithm, which mitigates distribution
shifts and modeling errors while preserving linear complex-
ity. Experiments on three real-world datasets show that IOPO
surpasses state-of-the-art methods, reducing iteration time
from months to one week and significantly lowering anno-
tation costs—especially in online scenarios.
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